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Abstract

Climate change projections anticipate increased frequency and intensity of drought

stress, but grassland responses to severe droughts and their potential to recover are

poorly understood. In many grasslands, high land-use intensity has enhanced pro-

ductivity and promoted resource-acquisitive species at the expense of resource-con-

servative ones. Such changes in plant functional composition could affect the

resistance to drought and the recovery after drought of grassland ecosystems with

consequences for feed productivity resilience and environmental stewardship. In a

12-site precipitation exclusion experiment in upland grassland ecosystems across

Switzerland, we imposed severe edaphic drought in plots under rainout shelters and

compared them with plots under ambient conditions. We used soil water potentials

to scale drought stress across sites. Impacts of precipitation exclusion and drought

legacy effects were examined along a gradient of land-use intensity to determine

how grasslands resisted to, and recovered after drought. In the year of precipitation

exclusion, aboveground net primary productivity (ANPP) in plots under rainout shel-

ters was �15% to �56% lower than in control plots. Drought effects on ANPP

increased with drought severity, specified as duration of topsoil water potential

w < �100 kPa, irrespective of land-use intensity. In the year after drought, ANPP

had completely recovered, but total species diversity had declined by �10%. Peren-

nial species showed elevated mortality, but species richness of annuals showed a

small increase due to enhanced recruitment. In general, the more resource-

acquisitive grasses increased at the expense of the deeper-rooted forbs after

drought, suggesting that community reorganization was driven by competition

rather than plant mortality. The negative effects of precipitation exclusion on forbs

increased with land-use intensity. Our study suggests a synergistic impact of

land-use intensification and climate change on grassland vegetation composition,

and implies that biomass recovery after drought may occur at the expense of

biodiversity maintenance.
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1 | INTRODUCTION

As changes of the global hydrological cycle are pushing precipitation

to extremes, reduced water availability in soils causes longer and

more severe intermittent drought stress with the potential to widely

modify ecosystem structure and function (IPCC, 2013; Knapp et al.,

2015). The economic, social and environmental losses associated

with drought are of increasing concern at both national and interna-

tional levels (Wilhite, Svoboda, & Hayes, 2007). There is a clear need

to understand how altered fluxes of water affect ecosystem

responses and feedbacks to climate extremes (Bahn, Reichstein,

Dukes, Smith, & McDowell, 2014; Borken & Matzner, 2009; Reich-

stein et al., 2013) and to determine how ecosystem sensitivity to

severe drought interacts with human land use (Grime et al., 2000;

Knapp et al., 2017; Smith, 2011). This is particularly important for

grasslands which face the challenge of meeting multifunctional

objectives and sustainable agricultural production against a back-

ground of changing environmental conditions (Foley et al., 2011; Fri-

dley, Lynn, Grime, & Askew, 2016; Newbold et al., 2015).

Extended water limitation imposes a general constraint on plant

growth and soil organisms. Experiments simulating extreme weather

events and manipulating the short-term fluxes of water typically at

the within-year scale, have found that drought-induced stress or

plant mortality result in reductions in soil respiration and ecosystem

photosynthesis (Frank et al., 2015; Wu, Dijkstra, Koch, Pe~nuelas, &

Hungate, 2011). Due to reduced plant growth rates summer

droughts can reduce the next-year populations of seeds (Zeiter,

Sch€arer, Zweifel, Newbery, & Stampfli, 2016). Severe drought also

has indirect effects on longer term ecosystem functioning via inter-

specific variation in drought sensitivity and reordering of the plant

community structure (Lloret, Escudero, Iriondo, Martinez-Vilalta, &

Valladares, 2012; Mariotte, Vandenberghe, Kardol, Hagedorn, & But-

tler, 2013). Community reordering may be driven by shifts in plant

competition, species mortality and recruitment due to water short-

ages during drought or transient increases in resource availability

after drought (Bloor & Bardgett, 2012; Davis, Grime, & Thompson,

2000). For example, different resistance of species to drought

resulted in differential mortality after drought (Hoover, Knapp, &

Smith, 2014). However, rewetting of dry soil may increase mineral-

ization and release inorganic nitrogen in soil immediately after

drought (Barnard, Osborne, & Firestone, 2013; Borken & Matzner,

2009; Jarvis et al., 2007) and translate into increased foliar N con-

centrations (Sardans et al., 2017). Moreover, the less dense vegeta-

tion and favourable light conditions after drought may enhance

recruitment from seed, resulting in long-term persistent structural

changes after natural droughts (Stampfli & Zeiter, 2004, 2008). To

date, the different mechanisms underlying drought recovery and

drought-induced changes in grassland community structure have

faced little attention (Felton & Smith, 2017).

Ecosystem drought responses and patterns of drought recovery

may be buffered or amplified by land use and management-induced

changes in plant communities (Bahn et al., 2014; Vogel, Scherer-

Lorenzen, & Weigelt, 2012). In temperate grasslands, intensification

by manure or fertilizer application and increased cutting frequency is

known to promote fast-growing over slow-growing species and the

expression of resource-acquisitive plant traits at the expense of

resource conservation (D�ıaz et al., 2004; Grime et al., 1997). Rela-

tionships between plant traits and plant water and nutrient economy

are powerful tools for predicting ecosystem responses to global

change factors (Lavorel & Garnier, 2002; Reich, 2014; Westoby, Fal-

ster, Moles, Vesk, & Wright, 2002). A number of grassland studies

have suggested that communities dominated by slow-growing (“re-

source conservative”) species may be more drought “resistant” and

hence show smaller growth reductions and mortality compared with

fast-growing (“resource acquisitive”) species during drought (Grime

et al., 2000; Lep�s, Osbornov�a-Kosinova, & Reym�anek, 1982; MacGil-

livray et al., 1995). Additional plant traits such as rooting depth can

also be expected to affect plant performance and survival during

precipitation exclusion (Zeiter et al., 2016; Zwicke, Picon-Cochard,

Morvan-Bertrand, Prud’homme, & Volaire, 2015). In contrast, the

more “resilient,” resource-acquisitive species are expected to benefit

from resource pulses after drought and show faster recovery. To

date, only few studies have systematically applied trait-based infor-

mation (Beier et al., 2012) and the “resistance-resilience” hypothesis

has not been tested rigorously across many field sites.

Here, we present the first multisite precipitation-exclusion experi-

ment to investigate how temperate, perennial grassland ecosystems

with contrasting land-use intensity respond to, and recover from, sev-

ere edaphic drought. Rainout shelters were used to exclude summer

precipitation in “seminatural” and “intensified” hay meadow pairs

located within similar macroclimates in Switzerland. Our grasslands

represented a gradient of land-use intensity across study sites. Within

all plant communities, grasses were the more resource-acquisitive

plant functional group with shallower-rooted species and forbs were

the more resource-conservative functional group with deeper rooted

species. We measured productivity in the year of the precipitation

exclusion treatment and in the following year. We also examined pos-

sible mechanisms of drought recovery and drought legacy effects on

plant community structure, seed production and fodder quality (nutri-

ent concentrations in biomass of grasses and forbs). Our overarching

hypothesis was that land-use intensity modifies drought effects on

grassland productivity and community structure. We predicted that

increasing land-use intensity would reduce grassland resistance to

drought, but increase recovery and affect the structural composition

after drought. As interspecific variation in resistance to drought and

drought-induced mortality may drive changes in vegetation composi-

tion, we predicted that grasses would decline at the expense of forbs.

2 | MATERIALS AND METHODS

2.1 | Study sites

Twelve sites were selected as pairs of “low-intensity” and “high-

intensity” grasslands in six regions across Switzerland at upland ele-

2 | STAMPFLI ET AL.



vations (555–1,110 m a.s.l.) in a humid or subhumid temperate cli-

mate with annual temperature means of 5.6–9.9°C and precipitation

sums of 880–1830 mm (Table 1; Figure 1). We chose permanent

grasslands which had constantly been used for hay making and had

remained unploughed for at least three decades (Table 1). Our “low-

intensity” seminatural grasslands, characterized by a relatively high

abundance of typical species of the Festuco-Brometea grassland cate-

gory (FB) sensu Ellenberg (1996), had been mown once or twice a

year and were generally unfertilized (Table S1). Our “high-intensity”

grasslands, characterized by a relatively high abundance of typical

species of the Molinio-Arrhenatheretea grassland category (AM) sensu

Ellenberg (1996), had been mown once to three times a year and

fertilized regularly with manure or slurry. At most sites, late hay-

making and occasional late-autumn grazing complied with current

conservation measures mimicking historical land use. Species rich-

ness was similar across ten sites and outstandingly high at two sites

(Table S1). Communities were not dominated by individual species

(Figure S1).

Sites had intermediate pH in the topsoil (5.2–7.1) and soil water-

holding capacities >20 dm3/m2 (Zeiter, Preukschas, & Stampfli,

2013). In order to minimize possible confounding effects of ground-

water and flows of surface water (Seneviratne et al., 2012), we

avoided other candidate sites with a water table close to the plant

rooting zone or a topography allowing water to coalesce.

2.2 | Land-use intensity

In order to rank our sites in terms of land-use intensity, we calcu-

lated the community-weighted means (CWM, Lavorel et al., 2008)

for specific leaf area (SLA; leaf area per unit leaf mass). We used

SLA because this leaf trait is strongly correlated with soil nutrient

fertility (Ordo~nez et al., 2009) and plant nutrient economy (Reich,

2014); high SLA and fast nutrient uptake is associated with exploita-

tive species which are characteristic for sites with intense land use

and high nutrient inputs (Allan et al., 2015). We obtained species

SLA values from the TRY database (Kattge et al., 2011), which con-

tains trait data of many authors (Appendix S1). We averaged SLA for

all species in a community, weighted by their frequency among 72

subplots per site in 2010 (prior to precipitation exclusion). Weighted

averages of SLA for both grasses and forbs were positively related

with community productivity measured prior to precipitation

TABLE 1 Locality name (with capital-letter code) of precipitation-exclusion experiments within regions, with site elevation (Elevat), intensity
of grassland use (LUI), contemporary community-weighted mean of specific leaf area (CWM SLA), biomass of cumulated harvests under
ambient conditions (ANPP2010), mean of annual precipitation 1961–2010 (MAP), cumulated warm-seasons precipitation from 1 March to 30
November 2010 (PWS/2010) and 10th percentile of mean cumulated warm-season precipitations 1961–2010 (PWS/10th), cumulated precipitation
from growing season start to latest harvest date of summer biomass growth 2010 (P2010) and reduction under rainout shelters (R), duration
with probability of recurrence of longest summer soil drought induced under rainout shelter as consecutive days with w < �100 kPa (CDD)

Locality/Code Region
Elevat
(m a.s.l.) LUI

CWM SLA
(m2/kg)

ANPP 2010

(gm�2)
MAP
(mm)

PWS 2010

(mm)
PWS 10th

(mm)
P 2010

(mm) R (%)
CDD
d p

MONthey Jura 650 Low 22.1 512 1,206 731 695 529 �56 76 <.02

COMbazin Jura 670 High 24.6 535 1,206 731 695 529 �56 132 <.02

KRAuchthal Plateau 625 Low 21.2 462 1,132 846 738 700 �52 90 <.02

ZOLlikofen Plateau 555 High 26.4 754 1,049 715 676 571 �52 74 <.02

THUn N. Prealps 570 Low 19.3 153 1,070 847 745 735 �47 56 <.02

ERLenbach N. Prealps 830 High 27.3 1,211 1,342 993 888 835 �45 67 <.02

Bister CHumme Cent. Alps 1,110 Low 19.4 176 878 648 469 420 �41 110 <.20

Bister BReite Cent. Alps 1,000 High 23.6 550 878 648 469 437 �44 110 <.20

NEGrentino S. Alps 820 Low 22.0 414 1,437 1,355 865 1,006 �30 57 <.04

CASserio S. Alps 770 High 28.4 1,107 1,398 1,337 836 1,001 �28 59 <.04

PREe S. Prealps 950 Low 23.3 798 1,834 1,999 1,126 1,357 �25 63 <.02

SOMazzo S. Prealps 575 High 26.2 540 1,726 1,908 1,046 1,287 �25 65 <.02

F IGURE 1 Multisite precipitation-exclusion experiment with pairs
of “low-intensity” (open symbol) and “high-intensity” (closed symbol)
grassland sites (permanent hay meadows) across six regions in
Switzerland (ordered in northwest–southeast direction), Jura (MON,
COM), Plateau (KRA, ZOL), northern Prealps (THU, ERL), central Alps
(BCH, BBR), southern Alps (NEG, CAS) and southern Prealps (PRE,
SOM), each of 12 sites contributing three blocks
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exclusion, thus reflected a gradient of low-to-high land-use intensity

in a functional continuum of slow- to fast-acquisitive plant species

across all sites (Table 1; Figure S2).

We also calculated CWM of the S scores (Hodgson, Wilson,

Hunt, Grime, & Thompson, 1999) as an alternative measure of land-

use intensity, assuming that community stress tolerance is inversely

related to speed of resource acquisition (Table S1). The S score is an

index which measures proximity to the stress-tolerant corner of the

CSR-plant functional type classification (Grime, 2001; Pierce et al.,

2017). CWMs of SLA and S score were highly negatively correlated

across sites (r = �.95, n = 12). Consequently, we only use CWM of

SLA in the subsequent analyses.

2.3 | Experimental design and precipitation
manipulation

At each site, we arranged six plots (1.32 9 1.48 m) in three blocks

with randomly allocated treatment, rainout shelters (dry) vs. ambient

conditions (amb), and with a minimal distance of 3.2 m between

plots. Within plots, we arranged 12 subplots (18 9 36 cm) in six

pairs of two contiguous subplots (36 9 36 cm) with distances of

12–76 cm between pairs (Zeiter et al., 2013).

We completely excluded precipitation between mid-June and the

end of August 2010 (Table S2) using 36 rainout shelters (three cov-

ers of ca. 3.8 9 4.5 m at each of 12 sites). The shelters consisted of

transparent plastic material (UVB window, Folitec, Germany; photo-

synthetically active radiation transmission of 89%) with a thickness

of 200 lm, fixed at an angle of 20° and held by a cylindrical roller

fixed on a wooden construction of four poles (Figure S3). We ori-

ented shelters towards the main wind direction in flat areas or paral-

lel to the slope to reduce border effects under the plastic covers.

Plastic covers only slightly enhanced temperature (+0.4 K) at 15 cm

above ground by reducing nocturnal cooling but did not affect tem-

perature at �6 cm belowground (Appendix S2).

2.4 | Soil moisture and edaphic drought stress

Given that a fixed period of rainfall exclusion may lead to different

degrees of drought stress across sites due to variation in intrinsic

pedological conditions, we measured soil moisture in the topsoil (0–

10 cm) under ambient conditions and under rainout shelters, in the

centre of plots, ca. 0.8 m below the plastic covers using TMS2 sen-

sors (TOMST� Measuring System, Czech Republic; two sensors per

site starting in spring 2010, six sensors per site from mid-June 2010

onwards; to bridge gaps without measurements of soil moisture for

dry periods in spring 2010, we extrapolated values based on locally

measured average daily declines in TMS2 raw-signal units during a

dry period in spring 2011). Simultaneous measurements from dielec-

tric soil water potential sensors (MP1, Decagon Devices, USA) were

used to convert daily means of the TMS2 signals into soil water

potential values.

To assess effects of precipitation exclusion in terms of edaphic

impacts relevant to plants across sites with different soil properties,

we used a common physical measure of drought stress based on soil

water potentials (w). We calculated edaphic drought severity (DS)

over a period as DS = 1 � (tdry/tamb), where t is the proportion of

time, in days, when w > �100 kPa (Table S2). In species-rich grass-

land and horticultural fields, the vegetative and reproductive persis-

tence of species in dense communities is essentially intact when

topsoil water potentials exceed w = �100 kPa, while plant growth is

impaired when water potentials fall below this threshold (Merot,

Wery, Isb�erie, & Charron, 2008; Shock & Wang, 2011). Values of DS

range between 0 ≤ DS ≤ 1, with DS = 0 indicating no difference and

DS = 1 indicating maximal difference in drought duration between

plots under rainout shelters and under ambient conditions across the

period considered.

Drought severity was calculated for the entire growing season

2010 (Table S2) when analysing its relation with response variables

measured in the years postdrought. The growing season for each site

was defined based on temperature records (RhiresD, MeteoSwiss)

and a growth threshold of 5°C. DS was adjusted for the concurrent

period of growth for response variables which were measured

before the end of the growing season 2010.

In order to scale edaphic droughts by maximal stress duration at

each site, we first determined the longest edaphic dry spells in 2010,

under rainout shelters (dry) and under ambient conditions (amb), as

the number of consecutive dry days (CDD) with soil moisture poten-

tials w < �100 kPa (Table S2). Then we estimated the probability of

recurrence in 50 years for the longest dry spell at each site (Table 1),

using daily meteorological data and our continuous local soil mois-

ture measurements in a two-step procedure to find the threshold

requirements for desiccation or rewetting of topsoil beyond

w = �100 kPa and to estimate the times of historical summer soil

droughts from daily precipitation data (Appendix S3).

To facilitate comparisons across biomes with annual-scale studies

expressing drought sensitivity as responses per unit precipitation

change (Smith, Wilcox, Power, Tissue, & Knapp, 2017), we cumu-

lated precipitation from growing season start to latest harvest date

of summer biomass growth 2010 (Table S3) and calculated precipita-

tion reductions affected by rainout shelters from daily local data

(RhiresD, MeteoSwiss, Table 1). We further estimated the site max-

ima of atmospheric water deficit for plots under rainout shelters

from cumulative daily balances between water gain from precipita-

tion (with no gains under rainout shelters) and loss from evapotran-

spiration (Appendix S3).

2.5 | Plant measurements

Green plant cover was visually estimated at the end of precipitation

exclusion (end of August 2010) and at the end of the growing sea-

son (mid-November 2010) to obtain simultaneous measures of maxi-

mum drought impact and recovery. A single observer estimated the

area covered by green plant tissue for 36 subplot pairs

(36 9 36 cm) using percentage area categories (100, 99, 98, 95, 91,

81, 62, 37, 18, 9, 5, 2, 1, 0), and averaged percentage area across

treatments per site.
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Biomass, including standing dead plant mass, was cut at 4 cm

above ground in two subplot pairs per plot two to four times a year

(Table S3) and weighed after drying at 60°C for >24 hr. To standard-

ize across sites, we used the sum of biomass harvests per year until

early October as an estimate of aboveground net primary productiv-

ity (ANPP). Biomass harvests in 2010 were used to assess direct

effects of drought, whereas biomass harvests in 2011 were used to

assess legacy effects of drought.

The biomass of the first and second harvests in 2011 was sorted

to grasses (including all graminoids) and forbs (nongramineous herbs

and woody dwarf shrubs), and the sum of both harvests was used as

a measure of postdrought functioning of these groups in tests of

drought legacies. The biomass of the first cut in 2011 was further

separated between annual and perennial species. Total nitrogen (N)

concentrations in grasses and forbs were determined from finely

milled samples of dried biomass of the first harvests in 2011 using a

ball grinder (Brinkmann MM200, Retsch, Germany) and an elemental

combustion analyser (Flash EA 1,112 CNS analyser, ThermoFinnigan,

Italy). The biomass data from one site (Combazin, COM) are missing

for the first cut of 2011 due to accidental grazing by cows.

The presence of all herbaceous vascular plant species rooted in

12 subplots per plots was recorded immediately before the first har-

vests in summer 2010, 2011, and 2012. Diversity measures were

calculated as subplot-scale species richness (SR), that is, the mean

number of species per subplot, plot-scale species richness (SRp), that

is, the cumulative number of species over 12 subplots, and Shannon

diversity [H0 = �Σ (pi ln pi)] based on 12 subplots per plot (Table S1).

Richness was also calculated separately for perennial grass, perennial

forb, and annual species.

In order to better distinguish effects of two drivers of vegetation

dynamics with overlapping impacts postdrought, we calculated abun-

dance-weighted means (AWM) of maximum rooting depth and

AWM of SLA using species data 2010 as predictors of the abilities

to survive under water-limiting conditions and to compete for

resources (Figure S2). We obtained maximum rooting depth for grass

and forb species from Kutschera and Lichtenegger (1982, 1992),

from references therein, and from the TRY database and SLA from

the TRY database (Appendix S1, Figure S4).

Seed rain produced by species was sampled in 2011 in the first

growth period, which normally contributes most to reproductive out-

put in hay meadows (Zeiter et al., 2016). We used seed traps of

3.6 cm in diameter and 2.5 cm in height, filled with sterilized sand,

in spaces between subplot pairs in the centre of plots, following Zei-

ter et al. (2013). Eight seed traps were placed level with the soil sur-

face between the end of April and beginning of May 2011 in each

plot. After approximately 3 months, we collected the seed traps

simultaneously at the two sites in each region, pooled the seed traps

per plot, and stored them at room temperature for approximately

2 months. We used the seedling emergence method (Ter Heerdt,

Verweij, Bekker, & Bakker, 1996) to determine the number of viable

seeds collected in the traps and recorded emergence from seed in a

cold frame from September 2011 until May 2012. Two sites (COM,

ERL) had to be excluded from the seed rain analysis due to

accidental grazing or heavy disturbance by mice of the area around

seed traps. We restricted analyses of seed density per species group,

species richness, and exponential Shannon diversity index (eH
0
) to

seven sites with a mean number of more than five seeds per plot.

2.6 | Data analysis

Our design was a two-factor split-plot arrangement with three repli-

cates (blocks). The factor site included 12 levels and the factor pre-

cipitation manipulation two levels, precipitation exclusion (dry) vs.

ambient weather (amb). The design had two strata: (a) site 9 block

(n = 36) with block nested within site, and (b) site 9 block 9 plot

(n = 72) with plot (precipitation exclusion) nested within block.

We first analysed the effects of site, precipitation exclusion, and

their interaction on absolute measures of green cover (2010), pro-

ductivity (2010, 2011), diversity (2011, 2012), community structure

(2011, 2012), and nitrogen concentration (2011). We applied split-

plot ANOVA to log-transformed biomass variables and to exponen-

tial Shannon diversity indices (Jost, 2006) and GLM with Poisson dis-

tribution and log-link function to count data, that is, species richness

and seeds in the seed rain. We applied GLM with binomial distribu-

tion and logit-link to nitrogen concentrations in biomass samples and

to green cover percentages. In order to account for the nested struc-

ture of our data, we produced accumulated analyses of deviance

tables, using built up residuals from “site 9 block” for stratum (a)

and “site 9 block 9 plot” for stratum (b) and applied quasi-F tests

(McCullagh & Nelder, 1989).

For variables showing a significant effect of precipitation exclu-

sion, we further explored the effects of edaphic DS and land-use

intensity (LUI) as drivers of relative drought effects. Relationships

between drivers and relative drought responses were analysed at

the scale of sites after previous analyses had revealed that block

only explained negligible variation in the data. Thus, log-response

ratios (ln RRdry/amb) were calculated from site means of plots under

rainout shelters and in ambient conditions. Multiple regressions using

backward selection were applied to test DS and LUI as predictors of

log-response ratios.

All statistical analysis was conducted using GENSTAT 18.0 (Payne,

2008).

3 | RESULTS

3.1 | Impact of precipitation exclusion on soil
moisture

Synchronized precipitation exclusion under rainout shelters for ca.

11 weeks in summer removed 25%–56% of rainfall across sites

(Table 1). In combination with modest regional dry spells of up to ca.

4 weeks in April and September, our treatments caused topsoil

water potentials of w < �100 kPa for 56–132 consecutive days

across sites (Figure 2). Most of these drought durations had esti-

mated recurrences beyond 50 years and thus could be considered

extreme (Table 1). For the growing season 2010, edaphic drought

STAMPFLI ET AL. | 5
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severities (DS) differed among sites: unfavourable growing conditions

(w < �100 kPa) increased by 18%–46% across sites under rainout

shelters compared with plots under ambient weather (Table S2; Fig-

ure 2). Edaphic DS was positively correlated with precipitation

reduction over the whole growing season (r = .693, n = 12). DS and

duration of the longest soil dry spell (CDD) were not strongly corre-

lated (r = .597, n = 12) due to variation in ambient weather

(Table 1).

3.2 | Plant measurements in the year of
precipitation exclusion

Precipitation exclusion strongly enhanced plant senescence and

reduced green plant cover (Table 2; Figure S5). At the end of our

precipitation manipulation, dry plots had 14.6% average green plant

tissue compared with 90.8% green plant tissue in ambient condi-

tions. Precipitation exclusion resulted in a �76.6% reduction in

F IGURE 2 Soil water potentials (w) under rainout shelters (red line) and under ambient conditions (blue line) and daily precipitation (bars)
across the growing season 2010 at the 12 sites of precipitation-exclusion experiments in grasslands used at low (left column) and high (right
column) intensity in the regions Jura, Plateau, northern Prealps, central Alps, southern Alps, southern Prealps. Mean values for soil water
potential before (black curve, n = 2), during and after (blue or red curve, n = 3) precipitation exclusion representing water availability in topsoil
(0–10 cm), estimated early season values for sites KRA, ERL, BCH, BBR (broken black curve). DS relates proportional times of a period when
soil water potential exceeds w �100 kPa (dashed horizontal line) for plots under rainout shelters (dry) with plots under ambient conditions
(amb). Note that calibration of soil moisture sensors was limited to a range of w > �200 kPa. See Table 1 for full site names

TABLE 2 Summary of statistical analyses testing the effects of precipitation exclusion across 12 grassland experiments

Site PE Site 3 PE ES DS LUI
F11,24 F1,24 F11,24 % R2 R2

Green plant cover 2010

Cover end of precipitation exclusion 13.25*** 1622.83*** 3.95** �83.9 n.s. n.s.

Cover end of growing season 29.93*** 63.73*** 4.66*** �13.3 n.s. n.s.

Productivity

Biomass summer growth 2010 62.66*** 736.73*** 15.96*** �76.6 .701*** n.s.

ANPP 2010 45.27*** 135.92*** 2.42* �35.7 .387* n.s.

ANPP 2011a 94.14*** 0.07 0.55 . . .

Seed density 2011b 27.08*** 21.23*** 4.43** 55.8 n.s. n.s.

Diversity 2011

Plant species richness 19.80*** 30.55*** 3.70** �10.3 n.s. n.s.

Plant species diversity [exp(H0)] 30.20*** 22.43*** 2.76* �7.6 n.s. n.s.

Seed species richness c 15.09*** 1.49 1.62 . . .

Seed species diversity [exp(H0)]c 10.86*** 9.88** 0.85 �28.0 n.s. .627*

Community structure 2011

Biomass grassesa 14.98*** 7.90* 1.01 21.2 n.s. n.s.

Biomass forbsa 7.15*** 19.14*** 0.88 �36.6 n.s. .317*

Biomass annual speciesa 33.12*** 19.39*** 7.23*** 121.7 n.s. n.s.

Species richness perennial grasses 13.66*** 7.30* 3.63** �6.3 n.s. .311*

Species richness perennial forbs 18.59*** 25.88*** 2.12 �17.9 n.s. n.s.

Richness in annual species 26.27*** 6.38* 2.61* 21.9 n.s. n.s.

Seed density perennial grassesc 16.26*** 0.07 1.15 . . .

Seed density perennial forbsc 5.24** 0.36 0.98 . . .

Seed density annual speciesc 6.22** 31.43*** 3.10* 221.4 n.s. n.s.

Nitrogen concentrations 2011

%N in grass biomassa 9.83*** 1.74 0.87 . . .

%N in forb biomassa 2.01 5.66* 1.98 �7.5 .296* n.s.

Direct drought effects on green cover and productivity in 2010 and drought legacy effects by 2011 on productivity, diversity, community structure and

nitrogen concentrations. F values of the main effects of site, precipitation exclusion (PE) and their interaction (Site 9 PE) and relative effect size (ES) for

significant drought effects. R2 values of significant relationships between DS or land-use intensity (LUI, measured as community-weighted means of

specific leaf area) and relative drought effects (expressed as natural logarithm of response ratio between precipitation exclusion treatments and controls)

revealed by multiple regressions using backward selection, ***p ≤ .001, **p ≤ .01, *p ≤ .05, n.s. factor not retained in final model. Note that degrees of

freedom were adjusted due to sites with missing data (aF10,22 or F1,22;
bF9,20 or F1,20;

cF6,14 or F1,14)
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summer biomass growth across sites and in a �35.7% reduction in

overall ANPP for 2010.

Drought-induced reductions in green plant cover were not

related to land-use intensity or edaphic DS calculated from growing

season start to the end of August. Moreover, the reductions in sum-

mer biomass and ANPP were not related to land-use intensity

(Table 2; Figure 3a,c) or CWM of maximal rooting depth (data not

shown). However, reduction in summer biomass and ANPP 2010

under precipitation exclusion was stronger for higher edaphic DS

(Table 2; Figure 3b,d).

Towards the end of the growing season in 2010, the differences

in cover of green plant tissue between treatments had sharply

declined or even disappeared, indicating rapid vegetation recovery

(Figure S5).

3.3 | Plant measurements in the years after
precipitation exclusion

In 2011, 1 year after precipitation exclusion, ANPP had fully recov-

ered (Table 2). Recovery in ANPP appeared to be driven by changes

in the relative abundance of plant functional groups. Precipitation

exclusion increased the biomass and richness of annual species

across sites (122% and 22% for biomass and species richness respec-

tively; Table 2; Figure 4). In addition rainfall manipulation resulted in

a 21% increase in grass biomass in the year following drought

(Table 2). Drought-induced increases in grass biomass occurred at

the expense of forbs (�37% biomass on average, Table 2). Forbs

showed reduced nitrogen concentrations in biomass and amplified

reductions with increasing DS while the N concentration of grasses

was not affected (Table 2; Figure 5). Precipitation exclusion also

increased total seed density in summer 2011 by 56% (Table 2) due

to a 221% increase in seeds of annual species (Table 2).

Unlike ANPP, plant species richness and Shannon diversity

indices recorded in 2011 showed negative legacy effects of precipi-

tation exclusion (average reductions of �10.3% in species richness

and of �7.6% in species diversity across sites, Table 2). With the

exception of annual species, negative legacy effects on richness and

diversity were also recorded in 2012 (Table S4). Land-use intensity

showed no relationship with drought-induced reductions in plant

community diversity, but drought-induced reductions of species

diversity in seeds were amplified with increasing land-use intensity

across sites (Table 2). Moreover, forb biomass after precipitation
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exclusion showed greater reductions at higher land-use intensity

(Table 2; Figure 6). In contrast, the increase in grass biomass was

independent of land-use intensity (Table 2; Figure 6). By 2011,

perennial grasses only showed average drought-induced reductions

of �6.3% in species richness, and this drought legacy effect

decreased with increasing land-use intensity (Table 2). AWM of max-

imal rooting depth did not explain the drought responses in either

grasses or forbs (data not shown).

4 | DISCUSSION

Contrary to expectations, land-use intensity did not alter either the

magnitude of drought effects recorded at the end of drought or the

degree of drought recovery on aboveground production recorded

1 year after precipitation exclusion across our 12 study sites

(Table 2; Figure 3a,c). In theory, grasslands of high land-use intensity

with fast-growing species and high biomass could show increased

sensitivity to drought due to greater plant water demand which

reduces soil moisture or allocation patterns adapted to competition

for light rather than belowground resource acquisition (Bloor & Bard-

gett, 2012). In practice, studies examining interactions between land

use and drought have found mixed results (Bloor & Bardgett, 2012;

Grime et al., 2000; Lep�s et al., 1982). In the present work, drought

responses in productivity across sites mirrored increases of grass

biomass, suggesting that compensatory increases in postdrought

grass growth had a stabilizing effect on grassland productivity. These

results highlight the importance of grasses for ANPP recovery, and

confirm previous findings from a single mesic grassland site (Hoover

et al., 2014).

Drought had strong negative effects on ANPP, but these

drought-induced reductions were no longer apparent in the year

after drought, indicating fast recovery of productivity (Table 2; Fig-

ure 3b,d). The strong drought responses observed here in the year

of drought agree with the range of biomass responses reported in

other grassland drought studies (Bloor & Bardgett, 2012; Frank et al.,

2015), and may reflect the inability of buffering mechanisms to oper-

ate under the intense water stress associated with strong pulse

drought events (De Boeck et al., 2017). Previous grassland studies

have also reported fast biomass recovery after severe, one-time

drought events in humid and arid climates (Hoover et al., 2014; Mar-

iotte et al., 2013; Yang et al., 2016); fast recovery is possible when

soil moisture has been recharged after drought, as belowground

plant meristems are highly resistant to drought (VanderWeide, Hart-

nett, & Carter, 2014; Volaire, Barkaoui, & Norton, 2014). In our

study, fast recovery may have been enhanced by high carbohydrate

reserves (Volaire et al., 2014) and relatively low plant mortality dur-

ing drought. Although our one-time drought treatments persisted for

56–132 consecutive days, limiting plant growth after 12–29 days

(w = �100 kPa) and causing leaf senescence and strong temporary

reductions in green cover, atmospheric water deficits remained

above the critical threshold (ca. �450 mm; Appendix S3) for tiller

mortality reported for temperate grass monocultures (Poirier, Dur-

and, & Volaire, 2012). High survival of perennial species was proba-

bly promoted by leaf senescence which reduced further dehydration
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of plants and desiccation of soils (Volaire et al., 2014). It is perhaps

notable that delayed drought recovery reported elsewhere has been

linked to the mortality of dominant species or drought-sensitive spe-

cies (Grime et al., 2008; Sala, Gherardi, Reichmann, Jobb�agy, &

Peters, 2012; Smith, Knapp, & Collins, 2009). Fast biomass recovery

in the present study may also have been enhanced by postdrought

nitrogen pulses (Bloor & Bardgett, 2012; Roy et al., 2016), also

known as the “Birch effect” (Barnard et al., 2013; Jarvis et al., 2007).

Drought-induced increases in soil N availability are generally associ-

ated with reduced plant N uptake as well as increases in microbial

mortality during drought, and may be further enhanced by

postrewetting pulses in microbial activity and mineralization rates

(Borken & Matzner, 2009). In the present work, we observed that

plant tissue had darker shade of green in dry vs. ambient plots at all

experimental sites soon after rewetting and the appearance of new

leaf blades.

Grassland diversity and community structure was more sensitive

to drought than productivity, with negative drought legacy effects

on species richness observed across sites in year one and two after

experimental drought (Tables 2, S4). Drought also promoted shifts in

vegetation structure via a decrease in forb growth, as well as an

increase in the richness and seed production of annual species

(Table 2). These drought-induced decreases in forb abundance were

exacerbated with increasing land-use intensity (Figure 6). The

drought-induced declines in species richness 1 year after drought

are in line with results with declining precipitation elsewhere (Har-

rison, Gornish, & Copeland, 2015). The persistence of a negative

drought legacy effect on species richness into the second year after

drought suggests that mortality losses outweighed gains from

recruitment of seedlings during or after drought for perennial spe-

cies, and could also partly reflect slow regrowth of perennial forbs

from surviving belowground organs. A disproportionate minority of

annual species was apparently favoured after drought (Figure 4) con-

sistent with theoretical models of species coexistence in variable

environments (Adler & Levine, 2007; Chesson, 2000; Grubb, 1977).

Drought-induced decreases in forb performance and the stronger

decline in species richness of forbs compared with grasses may

reflect lower morphological plasticity compared to grasses in

responses during drought (Wellstein et al., 2017) or lower competi-

tive abilities and resource acquisition following drought. Larger

drought-induced reductions in forbs at high land-use intensity were

not simply driven by lower forb abundance since these two variables

were positively related in ambient plots (data not shown). Most

likely, plant competition played a role in the decline of forbs post-

drought, since forbs showed drought-induced decreases in N con-

centration, whereas grass N concentrations were unchanged

(Figure 5). Indeed, grasses are better able to pre-empt nitrogen and

space due to their ability of rapid resprouting from basal meristem-

atic tissue (Volaire et al., 2014).

Stability studies have often used productivity metrics to assess

the resistance and recovery of ecosystems (Mariotte et al., 2013;

Wu et al., 2011). Our study revealed different responses to drought

based on metrics for productivity, diversity and community structure.

Using a productivity metric, our hay meadows appear to return

rapidly to normal functioning irrespective of the functional composi-

tion of the community. Using a metric of diversity or community

structure, however, our study suggests that hay meadows do not

return rapidly to a “normal” state. Plant species diversity remained

depressed in previously droughted plots, and the organization of the

community structure shifted towards increased grass dominance.

Use of a community structure metric also revealed an interaction

between grassland drought response and land-use intensity. This

highlights the importance of the choice of metric; choosing one or

the other is likely to affect our perception of ecosystem resilience,

including the complementary aspects of resistance and recovery (Oli-

ver et al., 2015).

General predictive understanding of ecosystem function sensitiv-

ity to climate change requires standardized data from multisite

experimental networks (Fraser et al., 2013). In the present study, the

severity of drought was scaled across sites using soil water poten-

tials in order to avoid erroneous interpretation of drought responses,

and sites were ranked using community-level leaf trait data (SLA) as

an indicator of land-use intensity. Trait-based approaches are an

effective tool for scaling up from plants to ecosystem functioning

and indicating environmental change (Dwyer, Hobbs, & Mayfield,

2014; Lavorel & Garnier, 2002; Poorter, Niinemets, Poorter, Wright,

& Villar, 2009; Wellstein et al., 2017). Recent work has also shown

that SLA is a satisfactory proxy of land-use intensity assessed as the

sum of mowing, grazing and N addition (Allan et al., 2015). Of

course, we recognize that the use of plant trait data from a global

database rather than from our field sites is a limitation of the pre-

sent study as this may underestimate in situ trait variation in

response to underlying site fertility and environmental conditions

(Siefert et al., 2015). Nevertheless, community-weighted means cal-

culated with species trait values from databases can accurately

reflect site-scale variation in plant community traits (Cordlandwehr

et al., 2013). In our study, database information allowed for a func-

tional distinction between graminoids and forbs across our wide pro-

ductivity gradient and also provides useful baseline information for

future cross-study comparisons.

Part of the difficulty of generalizing across previous studies on

extreme drought events stems from the fact that scientists have

used different metrics for precipitation treatments, often without

providing relevant indicators of drought stress in the soil (Vicca

et al., 2012). In fact, as historical information on soil moisture is lack-

ing (Seneviratne et al., 2012) scientists have often fully relied on his-

torical precipitation records to scale drought treatment extremity. In

the present study, the magnitude of drought-induced reductions in

ANPP in the year of precipitation manipulation was positively related

to edaphic DS despite almost identical duration of precipitation

reduction across sites. Precipitation exclusion may have varying

effects on soil water availability across sites depending on intrinsic

soil properties such as soil texture and organic matter content and

proximity to the soil water table, as well as due to differences in

in situ conditions at the onset of drought such as soil water levels,

plant phenology, air temperature and wind speed (Denton, Dietrich,
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Smith, & Knapp, 2017; Dietrich & Smith, 2016; English, Weltzin, Fra-

volini, Thomas, & Williams, 2005). Our study demonstrates that

meteorological drought (duration of precipitation exclusion) may be a

less reliable indicator of effective drought stress than soil water-

based measures. Unbiased interpretation of results of ANPP across

our multiple sites also benefitted from the fact that our ambient ref-

erence plots were shaped by normal weather in all regions during

the experiment (Table 1), and by an absence of droughts in the two

preceding years (Sala et al., 2012).

In summary, our results from this multisite experiment show that

plant diversity and community structure is more sensitive than pro-

ductivity to severe drought. These findings apply to temperate grass-

lands subjected to one-time droughts which do not deplete soil

water or plant carbohydrate reserves below thresholds where com-

munities lose their ability to recover in functioning after drought.

Moreover, drought-induced declines of the less resource-acquisitive

forbs are exacerbated by increasing land-use intensity. Our results

suggest that changes to the hydrological cycle may magnify the

threats to biodiversity from land-use intensification and eutrophica-

tion (Roth, Kohli, Rihm, Meier, & Achermann, 2017; Suding et al.,

2005; Sutton et al., 2011), with negative implications for longer term

species coexistence and ecosystem function. We recommend the

use of standardized multisite experiments for the detection of gen-

eral response patterns, and emphasize the importance of considering

edaphic drought and multiple metrics of structure and function in

the study of grassland drought sensitivity.
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