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• Whether forests and grasslands respond
similarly to extreme drought is un-
known.

• Meta-analysis compared forest and
grassland production resistance and re-
silience.

• Resistance followed a common contin-
uum of mean annual precipitation
(MAP).

• Grassland resilience increased, forest re-
silience decreased, with increasingMAP.

• Dry grasslands are most vulnerable; dry
forest response requires more research.
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Extreme drought is increasing in frequency and intensity inmany regions globally, with uncertain consequences
for the resistance and resilience of ecosystem functions, including primary production. Primary production resis-
tance, the capacity to withstand change during extreme drought, and resilience, the degree to which production
recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory
andmany observations suggest forest production ismore resistant but less resilient than grassland production to
extreme drought; however, studies of production sensitivity to precipitation variability indicate that the pro-
cesses controlling resistance and resilience may be influenced more by mean annual precipitation (MAP) than
ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and
inia Commonwealth University, Richmond, VA 23284, USA.
tjens).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2018.04.290&domain=pdf
https://doi.org/10.1016/j.scitotenv.2018.04.290
goodrichstej@vcu.edu
Journal logo
https://doi.org/10.1016/j.scitotenv.2018.04.290
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


361E. Stuart-Haëntjens et al. / Science of the Total Environment 636 (2018) 360–366
resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to
extreme drought was predicted byMAP; however, grasslands (positive) and forests (negative) exhibited oppos-
ing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may
determine grassland and forest resistance to extreme drought, whereas differences among plant residents in
turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns.
The low resistance and resilience of dry grasslands suggests that these ecosystems are themost vulnerable to ex-
treme drought – a vulnerability that is expected to compound as extreme drought frequency increases in the
future.

© 2018 Elsevier B.V. All rights reserved.
Keywords:
Forest
Grassland
Extreme drought
Primary productivity
Resistance
Resilience
1. Introduction

The frequency and intensity of extreme droughts are predicted to in-
crease throughout the century in many regions across the globe (IPCC,
2013), with widespread effects on ecosystem functioning anticipated
but poorly quantified or understood (Bahn et al., 2014; Easterling et al.,
2000; Ingrisch and Bahn, 2018). Ecosystem sensitivity to climate ex-
tremes is commonly characterized as resistance and resilience: resistance
quantifies the immediate change in ecosystem functioning (e.g., primary
production) following a perturbation; and resilience is the extent to
which ecosystem functioning returns to pre-event levels (Lloret et al.,
2011; MacGillivray et al., 1995). Global understanding of how these
measures of drought sensitivity relate to one another is limited, with
most studies examining resistance or resilience to drought, but not
both (Donohue et al., 2016). Moreover, whether grasslands and forests
within the same geographic regions follow similar, or unique, patterns
of primary production resistance and resilience within the same climate
space is unknown, but essential in order to generalize the stability of
ecosystem functioning across the global climatic continuum.

Ecological theory (Grime, 2001) and observations (Petrakis et al.,
2016; Schwalm et al., 2012; Zhao et al., 2015) suggest a tradeoff be-
tween the resistance and resilience of primary production, with the dif-
ferent life and evolutionary histories of resident grassland and forest
plant species portending different functional responses to extreme
drought. Forests, containing assemblages of long-lived woody species
completing life cycles over decades to centuries, are expected to be
more resistant and less resilient because of the increased energetic
cost and time associated with rebuilding biomass prior to reproduction
(MacGillivray et al., 1995). Conversely, grassland plant species with an-
nual turnover of production may be less resistant but more resilient,
exhibiting greater immediate vulnerability to extreme drought but ca-
pable of rapid re-establishment, growth, and reproduction by resident
plants (Hoover et al., 2014). Forest drought resistance has been attrib-
uted to mechanisms that limit water loss, increase water supply (hy-
draulic lift), or increase water-use efficiency (WUE) (Baldocchi et al.,
2004;Wolf et al., 2013). Additionally, trees generally maintain root sys-
tems that access deep soil water (Jackson et al., 1996) while grasslands
have shallower root systems and maintain high evapotranspiration
rates during drought, depleting soil moisture at a faster rate (Teuling
et al., 2010; Wolf et al., 2013).

Precipitation amount and variability, and how plant traits are arrayed
across precipitation gradients (Engelbrecht et al., 2007; López et al.,
2016), may shape an ecological and evolutionary tradeoff between pri-
mary production resistance and resilience. Though adaptations of forest
and grassland plants to water availability differ, ecosystems globally ex-
hibit lower primary production sensitivity to annual variation in precipi-
tation when located in wet environments, suggesting more mesic
grasslands and forests could exhibit greater resistance to extreme
drought (Huxman et al., 2004; Knapp and Smith, 2001). Conversely, the
greater sensitivity of production to year-to-year precipitation in dry eco-
systems suggests more rapid and complete resilience following drought.

In order to bridge the gapbetweenecological theory and empirical ob-
servations of production sensitivity and functional response, we con-
ducted a global meta-analysis of primary production resistance and
resilience to extremedrought in forests and grasslands across a broad gra-
dient of mean annual precipitation (MAP) (230 mm to 2467 mm yr−1).
The goals of this meta-analysis were 1) to evaluate where different eco-
systems exhibit shared or divergent responses across a common precipi-
tation continuum, 2) test the theory that forests are more resistant, but
less resilient, than grasslands, and 3) observe whether traditional
resistance-resilience trade-off theory applies at the ecosystem scale.

2. Methods

2.1. Study criteria

We conducted a Web Of Science search on January 6, 2017 that
included the following terms: (extreme* or severe disturbance), (resis-
tance or resilience or recovery), (biomass or productivity or production
or cover), and (grass* or forest or shrubland orwoodland or savannah or
heath* or tundra or alpine). We used studies that crossed with these
terms as well as additional studies cross-referenced from papers
found in this search. Out of 435 papers, a total of 45 studies containing
72 sites (43 grasslands, 21 forests, 4 shrublands, and 4 woodlands)
met our inclusion criteria. Due to the small sample size (Lemoine
et al., 2016), shrublands and woodlands were eliminated from the
quantitative analysis. Most of the sites selected were in North America
and Europe, with one site from each of the following continents: Asia,
Australia, Africa, and South America (Fig. 1).

For the resistance analysis, only studies based on terrestrial ecosys-
tems that justified the drought as “extreme” and reported primary pro-
ductivity from a true control, or a full reference year prior to the event,
were included. Post-event productivity one year following the event
was required for inclusion in the resilience analysis. Justification of ex-
tremity could include: 1) time-scales (Girard et al., 2012; Rondeau
et al., 2013; Schwalm et al., 2012), 2) drought return time (Kreyling
et al., 2008), 3) standardized precipitation-evapotranspiration index
(SPEI) (Cavin et al., 2013; Falk et al., 2008), or 4) N60% decrease in an-
nual precipitation (Hoover et al., 2015). Acceptable metrics of primary
production included net primary production (NPP), gross primary pro-
duction (GPP) (Litton et al., 2007), basal area increments (BAI) (for
functional types in which BAI is significantly correlated with productiv-
ity) (Lempereur et al., 2015), and cover (in arid and semi-arid ecosys-
tems only) (Zhang et al., 2016). All 64 forest and grassland sites were
used in the resistance analysis, while 10 forests and 22 grasslands
were included in the resilience analysis.

2.2. Extremity validation

For natural events only, modelled standardized precipitation-
evapotransporation index (SPEI) for each site served as an independent
check on author-reported drought extremity. Modelled SPEI values
were extracted from DroughtNet using the Precipitation Trends Tool
(drought-net.org). Author assessments of extreme drought and
modelled SPEI agreed in N90% of the cases. The remaining 10% fell in
higher latitudes where the SPEI model generates higher uncertainty
(Nathan Lemoine, direct correspondence). To avoid potential experi-
mental bias, analyses were run twice: once including all sites

http://drought-net.org


Fig. 1.Globalmapdisplaying site locations included in the analyses. Blue circles indicate use in the resistancemodel onlywhile orange circles represent sites used in both the resistance and
resilience models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(experimental and natural) and then, including only natural cases that
agreed with modelled SPEI.

2.3. Metrics of resistance and resilience

Using previously publishedmetrics, resistancewas quantified as the
change in ecosystem functioning following drought, and resilience the
extent to which ecosystem functioning returned to pre-event levels
one year post-drought (Gazol et al., 2017; Hoover et al., 2014; Lloret
et al., 2011; MacGillivray et al., 1995; Nimmo et al., 2015; Pretzsch
et al., 2013). To standardize site comparison, we calculated the log re-
sponse ratio effect sizes of primary production resistance, quantified
as production during drought divided by control (or pre-drought)
production, and resilience, production one-year post drought divided
by control (or pre-drought) production, for each site.

2.4. Statistical analysis

Data were analyzed using two separate Bayesian analysis of covari-
ance models, one for each response variable (resistance and resilience).
Each model included ecosystem type (forest, grassland) as a categorical
predictor, author-reported MAP as a continuous predictor, and the in-
teraction between ecosystem type and MAP. We placed weakly infor-
mative priors [N(0, 1)] on all parameter estimates (Lemoine et al.,
2016). These conservative priors state that it is unlikely that a one stan-
dard deviation change in MAP would yield a change of N1 log response
ratio unit, thereby guarding against overestimated effect sizes with
small datasets (Button et al., 2013; Lemoine et al., 2016). Models were
allowed a warm-up of 5000 iterations for each of four Markov Chain
Monte Carlo (MCMC) chains, and the next 5000 iterations from each
chain were saved as posterior parameter estimates (20,000 total esti-
mates). Convergence was checked using posterior density and trace
plots.

Additional models were run using the United Nations Environment
Programme (UNEP) mean site aridity index (MAI) in place of MAP,
and we used Bayesian linear regression to determine how resistance
varied with resilience. MAI, or MAP divided by potential evapotranspi-
ration (PET), was calculated using modelled PET value extracted from
DroughtNet. Results for MAI and MAP models were similar, but we
present MAP results since the metric requires no modeling and is
thus, a more accurate measurement.

Differences between forest and grassland resistance and resilience
were explored using contrasts. After the model was run, we calculated
the predicted resistance and resilience for forests and grasslands and
the mean precipitation of each ecosystem type, respectively. This
generated 20,000 posterior estimates of forest and grassland
resistance/resilience. To evaluate mean differences between forests
and grasslands when resistance and resilience values were normalized
for precipitation, we derived adjusted values at the grand (i.e., all sites
included) mean annual precipitation of MAP = 828 mm. Contrasts
were conducted by calculating the difference between forests and grass-
lands for every posterior chain (Kruschke, 2015).

To account for potentially confounding variables, we tested for, but
found no support for, significant differences between the resistance
and resilience of: author-reported natural versus experimentally im-
posed drought events; managed versus unmanaged ecosystems; ex-
treme drought events only versus extreme drought events with
heatwaves; use of pre-event versus control production derivation of re-
sistance/resilience; and GPP versus NPP metrics of production (SI
Table 1). Similarly,we foundno significant difference between the resis-
tance and resilience of pulse (b2-year duration) versus press (N2-year
duration) drought events (sensu Hoover et al., 2015).We found no cor-
relation between modelled SPEI and resistance or resilience (SI Fig. 1).
Sample sizes were too low to compare resistance and resilience of
plant functional types within ecosystem functional types (see site
characteristics in SI Table 1; examples include C3 versus C4 grasslands
evergreen needleleaf versus deciduous broadleaf for forests).

3. Results

3.1. Resistance

We found that the resistance of both forests and grasslands in-
creased along a common continuum of MAP [Probability of an effect:
Pr(MAP slope N 0) = 0.95] (Fig. 2A, SI Table 2). Contrary to theoretical
expectations, forests and grasslands exhibited the same trend across a
MAP gradient of N2000 mm [Pr(Interaction) = 0.70]. Forest and grass-
land sites with lowMAP exhibited similarly low primary production re-
sistance, and thus were more likely to decline following extreme
drought irrespective of ecosystem type, whereas forest and grassland
sites with higher MAP were more resistant. Similar trends were found
when MAI was substituted for MAP (SI Fig. 2, SI Table 3). Forests were,
on average, wetter than grasslands and thus had higher average resis-
tance [Pr(Forests N Grasslands) = 0.96] (Fig. 3A, SI Table 4). However,
the lack of an interaction suggests that forests and grasslands exhibited
similar resistance across an overlapping range of MAP (Fig. 2A). Our



Fig. 2.Resistance (A) and resilience (B) of forest (closed circles) and grassland (open circles) primary production following extreme drought againstmean annual precipitation. Resistance
was calculated as the log response ratio of drought productivity divided by pre-drought productivity. Resilience was calculated as the log response ratio of post-drought productivity
divided by pre-drought productivity. The shaded area depicts the 95% Bayesian credible interval of the regression.
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findings demonstrate that mean differences in the resistance of forests
and grasslands is attributed to their distribution in climate space rather
than unique resistance sensitivities (i.e., slopes) across MAP.

3.2. Resilience

In contrast to resistance, forests and grasslands exhibited oppos-
ing primary production resilience patterns across the MAP gradient
[Pr(Interaction) = 1.00]. Grassland resilience was positively corre-
lated with both MAP [Pr(Grassland MAP slopes N 0) = 1.00] and
MAI [Pr(GrasslandMAI slopes N 0)= 0.96] (Fig. 2B, SI Fig. 3, SI Tables 5
& 6). Conversely, forest primary production resilience was unrelated to
MAP [Pr(Forest MAP slope b 0) = 0.84], but negatively related to MAI
[Pr(Forest MAI slope b 0)= 0.95]). Notably, forest resilience was nega-
tively related to MAP when experimentally manipulated sites were re-
moved from the analysis (N=2) [Pr(Forest MAP slope b 0)= 0.98] (SI
Fig. 4, SI Table 7). Across sites, grasslands remained more resilient than
forests when resilience was normalized to mean MAP [Pr(Grasslands
N Forests) = 0.97] (Fig. 3B, SI Table 8), indicating that differences in re-
siliencewere not attributed to the occupation of different climate space.

3.3. Resistance-resilience trade-off theory

We found no evidence that the theoretical assumption of a tradeoff
between functional resistance and resilience applies at the ecosystem
Fig. 3. Forest versus grassland contrasts of resistance (a) and resil
scale [Pr(N0) = 0.55], nor did we find evidence that tradeoffs differed
among ecosystem types [Pr(Interaction) = 0.80] (Fig. 4, SI Table 9).

4. Discussion

Ourfindings suggest that the theoretical expectations that forest and
grassland ecosystems, with different life and evolutionary histories,
should exhibit tradeoffs in their primary production resistance and re-
silience following extreme drought are not supported. Rather, grass-
lands and forests displayed a common resistance relationship with
MAP but opposing patterns of resilience. On average, forests were
more resistant than grasslands; however, differences in mean ecosys-
tem resistance were attributed to climate space rather than inherent
differences in sensitivity to precipitation. A common continuum of
shifting plant physiological adaptation to increasingly dry environ-
ments, such as control of stomatal conductance, aswell as functional di-
versity of drought “tolerating” and “avoiding” species (Anderegg and
Hillerislambers, 2016; Craine et al., 2012; Dry et al., 2007), may stabilize
grasslands and forests equally during periods of extremedroughtwith a
linear decline in function (Huxman et al., 2004). Production of drier eco-
systems can be more sensitive to inter-annual precipitation variability
(Huxman et al., 2004), suggesting drier ecosystems may operate closer
to water limitations, supporting our results. Although some observa-
tional studies found forests to have a higher water-use efficiency than
grasslands during drought (Baldocchi et al., 2004; Wolf et al., 2013),
ience (b) following extreme drought (±standard deviation).



Fig. 4. The resistance and resilience of forest and grassland primary productivity following
extreme drought. Open circles represent grasslands and closed circles represent forests.
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those findings may reflect the forest plant functional type observed
(Beer et al., 2009) rather than inherent differences between ecosystem
type (i.e. grassland versus forest). Strengthening this idea further, a
WUE synthesis across a range of ecosystems and plant functional
types found that WUE was higher for broad-leaf forests compared to
needleleaf forests, but generally did not differ between forests and
grasslands (Beer et al., 2009).

Opposing relationships between forest and grassland resiliencewith
MAP could potentially be explained by differences among predominant
resident plant species in drought adaptations, plant architecture and
anatomy, and turnover time life history. Dry-adapted woody species
may be more drought tolerant than their wetter counterparts, and,
therefore recover more rapidly and fully following extreme drought
(Anderegg and Hillerislambers, 2016; Bannister, 1986; Gazol et al.,
2017; López et al., 2016; Wright et al., 2013). Additionally, increased
mortality events noted in drier forest ecosystems following extreme
drought (Allen et al., 2010, 2015) may decrease competition for water
and other resources, allowing surviving individuals to rapidly compen-
sate when precipitation returns (Bottero et al., 2017; Reed et al., 2014).
Such mortality production compensation has been noted following
other heterogeneous mortality events (Stuart-Haëntjens et al., 2015).
Sincemesic forests aremore resistant to extreme drought, lessmortality
may occur, dampening this compensatory growth that contributes to
resilience. When mortality does occur, the degree of the growth
response due to reduced inter-tree competition for water could be of
lesser magnitude since mesic ecosystems are less likely to be water-
limited (Huxman et al., 2004).

Grasslands, having evolved inmore variable and often drier climates
than forests, and being prone to frequent, biomass reducing disturbance
regimes such as grazing, mowing or burning, likely possess a higher
prevalence of traits that support rapid re-establishment and regrowth
following perturbation (Ingrisch et al., 2017; Stampfli et al., 2018).
Since grasses do not maintain tall woody structures, but often senesce
when extremely water-stressed (Moran et al., 2014), the majority of
aboveground biomass must regenerate following drought alleviation.
Mesic grasslands often rapidly regrow when water availability returns,
sometimes overshooting pre-drought productivity (Carter and Blair,
2012; Hofer et al., 2016; Stampfli et al., 2018), while dry grasslands re-
cover more slowly, likely due to a general water-limitation (Reich,
2014; Schwalm et al., 2017) or because droughts cause higher plant
mortality in dry than in mesic biomes.

Our findings are not without limitations, and particularly expose the
need to evaluate extreme drought responses in underrepresented
ecosystem types and geographic regions. Our meta-analysis could not
robustly assess the resistance and resilience of shrublands and wood-
lands because sample sizes were low (4 of each ecosystem). However,
these intermediary ecosystem types, occurring between forests and
grasslands along precipitation continua, may display different resis-
tance and resilience patterns (Ma et al., 2016; Peñuelas et al., 2007;
Pereira et al., 2007). Similarly, the majority of studies incorporated in
our analysis were temperate (64%) and most derive from temperate
North America or Europe (92%), with Asia, South and Central
Americas, Australia, and Africa representation disproportionally lower.
This concentrated distribution and representation of ecosystems in
the literature highlights a need for broader investigation of primary
production resistance and resilience to extreme drought.

5. Conclusions

Our findings offer new insights into global patterns of resilience and
resistance, while raising new questions about themechanisms underly-
ing our observations. The congruent resistance behaviors of grasslands
and forests across the precipitation gradient could be explained by a
shared cross-ecosystem continuum of physiological adaptations that
maximize water-use efficiency within a common precipitation climate
domain (Ponce Campos et al., 2013). In contrast, the divergent resilience
patterns of grasslands and forestsmay be caused by differences inmean
plant turnover time, with regrown grassland species recovering to pre-
drought biomass levels more rapidly than woody forest plant species
(Grime, 2001). The low primary production resistance and resilience
of dry grasslands indicates that these ecosystems could be themost vul-
nerable to forecasted intensification of climate extremes with changing
climate (Cook et al., 2014). Moreover, though beyond the scope of our
analysis, our findings reinforce those suggesting cumulative effects of
repeated extreme events may be most profound for these ecosystems
(Schwalm et al., 2017). The low resilience of mesic forests suggests
greater vulnerability of these large carbon sinks to recurrent drought
extremes (Saatchi et al., 2013), while the higher than expected resil-
ience of dry forests could prompt a reconsideration of the vulnerability
of these forests types. Climate extremes are major drivers of the global
carbon cycle (Reichstein et al., 2013), making it essential to consider
these divergent ecosystem responses when estimating the future
impact of extreme droughts on biogeochemical cycling and climate
feedbacks.
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