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Energies, 75005 Paris, France

Summary

Tissue mechanics have been shown to play a key role in the

regulation of morphogenesis in animals [1–4] and may have
an equally important role in plants [5–9]. The aerial organs of

plants are formed at the shoot apical meristem following
a specific phyllotactic pattern [10]. The initiation of an organ

from the meristem requires a highly localized irreversible
surface deformation, which depends on the demethylesteri-

fication of cell wall pectins [11]. Here, we used atomic force
microscopy (AFM) to investigate whether these chemical

changes lead to changes in tissue mechanics. By mapping
the viscoelasticity and elasticity in living meristems, we

observed increases in tissue elasticity, correlated with

pectin demethylesterification, in primordia and at the site
of incipient organs. Measurements of tissue elasticity at

various depths showed that, at the site of incipient pri-
mordia, the first increases occurred in subepidermal tissues.

The results support the following causal sequence of events:
(1) demethylesterification of pectin is triggered in subepi-

dermal tissue layers, (2) this contributes to an increase in
elasticity of these layers—the first observable mechanical

event in organ initiation, and (3) the process propagates to
the epidermis during the outgrowth of the organ.
Results

The Mechanical Properties of the Meristem: Viscoelasticity

and Elasticity
In plants, organ emergence requires cell expansion, which
is controlled by turgor pressure and wall relaxation [12, 13].
As such, organ emergence likely requires changes in wall
mechanics as suggested by the triggering of ectopic organs
by applying the wall-loosening agent expansin [14]. Manipula-
tion of pectins within the cell walls of the meristem also affects
organ emergence [11]. The plant cell wall can be considered as
a fiber-reinforced composite: rigid cellulose microfibrils are
embedded in, and crosslinked by, a hemicellulose and pectin
matrix [15–17]. In the absence of growth (irreversible, or
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plastic, deformation), plant cell walls behave as a viscoelastic
material—they retain shape after deformation, but with a time
delay [18]. We first used atomic force microscopy (AFM) to
examine the viscoelasticity of the meristem through relaxation
time experiments. Using an AFM cantilever mounted with a
5 mm bead, we performed 20 s cyclical indentations at several
positions on plasmolyzed meristems to study the tissue
response (see Figure S1 available online). The data were fitted
with a modified Kelvin-Voigt model, separating the behavior
into two components: a bulk elastic constant and a relaxation
time (Figure S1). The bulk elastic constant showed large
variation between the meristem dome and the primordia (Fig-
ure 1A), whereas the relaxation time values did not differ sig-
nificantly. The increased elasticity correlates with the higher
growth and division rates in primordia compared to the meri-
stem [19–21].

Changes in Tissue Mechanics Associated with Organ

Initiation in the Apical Meristem
We next focused solely on the elastic component by in-
creasing the speed of indentations to negate the viscous
behavior (Figure S1). We used a Hertzian model to fit the in-
dentation data and define the apparent Young’s modulus
(EA, coefficient of elasticity) for the tissue [22] (Figure S1).
The higher the EA, the less elastic (or stiffer) the tissue is.
We mapped EA on inflorescence meristems using a 5 mm

diameter tip, which, as shown below, provided information
from several cell layers of the meristem combined. We
observed that EA was lower in primordia (P2–P4) than in the
meristem (Figures 1C and 1D; Figure S1). Surprisingly, the
areas corresponding to the incipient primordia also showed
lower EA. Thus, decreases in EA both preceded and accompa-
nied organ emergence and correlated with an increased pectin
demethylesterification [11]. The observed differences in EA in
principle may reflect several parameters: cell geometry, wall
anisotropy, wall elasticity, or wall thickness. Because the
decrease in EA occurred without obvious changes in cell
geometry (Figures 1E–1J) and did not correlate with the pre-
dicted degree of cellulose anisotropy in the outer tangential
cell wall of the epidermal layer (see Supplemental Experi-
mental Procedures) [7, 8], we conclude that it must reflect
changes in wall elasticity and/or thickness.

Pectin Modification Alters Cell Wall Mechanics

in Apical Meristems
We next focused on the role of pectin in cell wall mechanics.
The degree of methylesterification of the pectic polymer ho-
mogalacturonan (HG) is directly related to its physicochemical
properties [23]. HG is secreted in a highlymethylesterified form
and is selectively demethylesterified in the cell wall by pectin
methylesterases (PMEs). PME activity is antagonized by
endogenous PME inhibitors (PMEIs) [23].
We have shown that the overexpression of PECTIN

METHYLESTERASE 5 (PME5oe) leads to decreased pectin
methylesterification and ectopic primordia, whereas overex-
presssion of PECTIN METHYLESTERASE INHIBITOR 3
(PMEI3oe) leads to increased pectin methylesterification and
the inhibition of organ formation (Figures 2A and 2B) [11].
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Figure 1. Composite Cell Wall Mechanics in the Arabidopsis Shoot Apical Meristem

(A) The mean and the standard deviation of the bulk coefficient of elasticity (left) and the associated relaxation time (right) measured on meristem dome,

incipient organ, and primordia (P3 onward) at five different points each.

(B) Topographical reconstruction of anArabidopsis inflorescencemeristem from atomic forcemicroscopy (AFM) point-of-contact data obtainedwith a 5 mm

bead. Protruding cells correlate with areas of markedly reduced stiffness (red asterisk in B and C). The topographical reconstruction is 60 mmwide and up to

15 mm high.

(C) Representative map of the apparent Young’s modulus (EA) of the same meristem as in (A), showing differences in EA (representative of 36 studied; Fig-

ure S1). Themap shows data from two successive maps of 453 64 and 403 64 force scans. In this and all other such panels, EAmaps are presented as heat

maps with their respective scales.

(D) Graph representing the EA of the meristem in (A) and (B), distinguishing the areas corresponding to cell periphery and cell center.

(E–J) Confocal stack of an Arabidopsis inflorescence meristem stained with propidium iodide, illustrating phyllotactic pattern, surface topography, and cell

size in I1 (E), P1 (F), and P2 (G). Virtual sections of (E)–(G) are shown in (H)–(J). Blue arrowhead indicates L2 division in P2. White text indicates primordia or

incipient primordia shown in virtual sections (H)–(J).

Each pixel in the EA map represents the EA calculated from a single force-indentation curve, and each map consists of 4,096 data points. The EA plotted on

the graphs was determined by sampling data points within the area of interest (see Experimental Procedures and Supplemental Experimental Procedures).

The following abbreviations are used: P: primordia; I, incipient organ; M, meristem dome. Error bars indicate standard deviation (SD) of measurements.

Scale bars represent 10 mm.
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Using a 5 mm bead tip, we observed that PME5oe meristems
and peripheral zones (Pe) had a uniform lower EA, similar to
that of nontransgenic (NT) control primordia, whereas
PMEI3oe meristems and Pe had a uniform higher EA, similar
to that of the NT meristem (Figures 2C–2E). The differences
in EA between NT, PME5oe, and PMEI3oe occurred irrespec-
tive of cell geometry (compare Figures 1E–1J to Figures
2F–2I and Figure S2). These data show that changes in pectin
methylesterification status have effects on cell wall mechanics
and that these effects correlate well with the downstream
effects on organ initiation.

Decreases in EA at Incipient Primordia Are Initiated
in Underlying Tissue Layers and Not in the L1

In Arabidopsis, the shoot apical meristem is organized in
distinct tissue layers: an outer epidermis (or L1 layer), an
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Figure 2. Effect of Pectin Modifications on

Mechanical Properties in the Meristem and Phyl-

lotaxis

(A and B) Scanning electron micrographs of

transgenic meristems overexpressing the

PECTIN METHYLESTERASE INHIBITOR 3

(PMEI3oe) or PECTIN METHYLESTERASE 5

(PME5oe) genes, respectively.

(C–E) EA maps (C and D) and graph (E) of repre-

sentative PMEI3oe and PME5oe meristems

(representative of the 8 and 13 studied; Fig-

ure S5).

(F–I) Confocal stacks of PMEI3oe (F and H) and

PME5oe (G and I) meristems showing surface

topography and cell size in meristem and

periphery.

Scale bars represent 100 mm in (A) and (B) and

10 mm in all other panels. The following abbrevia-

tions are used: M, meristem dome; Pe, meristem

periphery. Note that meristems in (A) and (B), (C)

and (D), and (F)–(I) are different samples. Error

bars indicate SD of measurements.
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underlying L2 layer, and the multilayered L3 [10]. To deter-
mine in which cell layers the decrease in EA occurred first,
we used a modified version of an approach developed for
animal tissues [24]. We used a 1 mm bead and a 5 mm bead
as AFM probe tips to examine different tissue depths; based
on cell size, a 1 mm bead would probe the properties of the L1,
whereas a 5 mm bead would deform a larger volume, including
subepidermal tissues (Figures 3E and 3F). Using the 1 mm
bead tip on NT Arabidopsis inflorescence meristems, we
observed a decreased EA in emerged organs but, surprisingly,
not at incipient organs (Figures 3B and 3C; Figure S3). There-
fore, it is likely that the decrease in EA in incipient organs,
observed with the 5 mm probe, reflected changes in under-
lying tissues, not the L1. To determine when the first changes
in EA in the L1 layer occurred, we examined primordia of
successive age, or plastochron, using a 1 mm bead (Figures
3G–3I). A significant decrease in EA in the L1 was observed
only from P2 or P3 on, concomitantly with the formation of
a well-defined crease. We previously showed that demethy-
lesterification of pectins in the L1 of primordia was only
detectable from this particular stage onward [11] and there-
fore parallels the observed decrease in EA. To confirm that
spatial differences in EA within the L1 did not play a role in
organ initiation, we induced an EA decrease specifically in
the L1 layer by expressing the PME5 gene under control of
an inducible form of the L1-specific AtML1 promoter
(L1-PME5oe; Figure S3). AFM measurements with a 1 mm
probe on induced L1-PME5oe meristems showed an overall
decrease of EA in the L1, and emerged organs could not be
distinguished from the meristem (Figures 3J–3L; Figure S3).
Measurements with a 5 mm probe also showed a lower overall
EA, but differential EA between areas was maintained (Fig-
ures 3M–3O; Figure S3). The L1-specific decreases in EA
(in L1-PME5oe) did not lead to aberrant
organ positioning, whereas a decrease
in all layers (in PME5oe) did (Figure S3).
In sum, our results reveal a causal link
between pectin demethylesterification
and a decrease in EA and suggest that
the decrease in EA in subepidermal layers is the first mechan-
ical event underlying primordia initiation.

Discussion

In this study, we present measurements of the elastic
response of cell walls, represented by EA. It is not clear how
the elasticity of the wall relates to its extensibility, which is a
measure of the irreversible deformation over time associated
with growth [18]. Although viscoelasticity has been correlated
with growth in several studies [25, 26], such a correlation may
not be a prerequisite in all contexts [18]. Here and in a previous
study [11], we have shown that manipulating the EA of the cell
wall has an impact on organ initiation and therefore presum-
ably wall extensibility. The exact mechanism underlying this
link remains to be determined: the decrease in EA may reflect
increased cell wall hydration [27], which in turn may facilitate
the sliding of wall polymers or the mobility of wall-modifying
agents (expansins, XTH) and thus increase extensibility
[28–30]. In vivo measurements of wall hydration and/or thick-
ness during organ initiation may clarify this.
Our results indicate that pectin modification is one major

contributor to wall elasticity within the meristem. The correla-
tion between a decrease in EA and pectin demethylesterifica-
tion was unexpected, given the widely accepted model
that predicts cell wall stiffening upon PME activity [23] (see
Supplemental Experimental Procedures for a more detailed
discussion).
Organ emergence has been correlated with initial periclinal

divisions (parallel to the surface) within the L2 and L3 layers,
followed by anticlinal divisions (perpendicular to the surface)
in the L1 layer [31–34]. This observation suggests that cell
expansion is initiated in the L2 and L3 tissues and is consistent
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Figure 3. Cell Wall Mechanics in the L1 of the

Meristem, and the Effect of L1-Only Softening

(A) Topographical reconstructionof anArabidopsis

inflorescence meristem from AFM point-of-

contact data obtained with a 1 mm bead (same

meristem as shown in Figures 1B and 1C).

(B and C) Representative EAmap (B; combination

of two successive maps of 50 3 64 and 20 3 64

points) and graph (C) of the same meristem as

in (A) and (B), showing differences in cell level

mechanics and a higher cellular resolution (n =

11). Cross walls in emergent primordia are less

obvious, due to the overall softening of these

walls.

(D) Topographical reconstruction from (A) with

imposed EA map data from (B) to show sample

dimensions and the nonexistent correlation

between geometry and EA variation.

(E and F) Theoretical representations of tissue

level specificity given by different probe sizes.

The range of volumetric compression was ob-

tained using a 1 mm bead (E) and a 5 mm bead (F).

(G–I) Topographical reconstruction (G), EA map

(H), and EA graph (I) from a representative meri-

stem showing successive primordia in time

from I1 to P3. Note that P2 stage primordium

here is less developed than that in (A) and (D),

as indicated by the degree of bulging.

(J, L, M, and O) EA maps (J and M) and corre-

sponding graphs (L and O) of nontransgenic

control meristems for comparison (n = 12 and

n = 36, respectively).

(K, L, N, and O) EA maps (K and N) and corre-

sponding graphs (L and O) of transgenic plants

(K and N) expressing the inducible PME5 gene

in L1 (L1-PME5oe; n = 6), 18 hr after induction,

probed with a 1 mm bead and a 5 mm bead,

respectively.

All graphed EA datawere taken from anticlinal cell

walls (see Experimental Procedures and Supple-

mental Experimental Procedures). Scale bars

represent 10 mm. Error bars indicate SD of

measurements.
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with Sachs’ theory that growth is driven by inner layers [35]. In
contrast, it has also been suggested that the epidermis may
restrict growth [36], as shown in aerial parts of the plant [37,
38]. The latter assumption also underlies recent mathematical
models, which reduce the meristem to an inflated elastic shell
with no significant mechanical contribution of internal tissues
[7, 8, 39]. Here we have demonstrated that the first decreases
in EA are seen subepidermally (L2 and L3) at incipient sites,
whereas a decrease in EA in the L1 was observed only when
a more complex geometry emerged
(>P2–P3), as shown by the formation of
a crease. These results suggest that
the decrease in EA of underlying tissues
triggers cell expansion and division and
thus provides the driving force for the
surface deformation (Figure 4). We
propose that the L1 layer only becomes
growth-limiting once the organ has
been initiated.
Over the past decade, it has become

clear that maxima of the phytohormone
auxin are essential for organ positioning
and formation (Figure 4) [10, 40, 41].
Auxin is tightly linked to the mechanics
of the meristem: auxin maxima affect expansin activity, and
recent work has shown that the auxin transporter PIN1
responds to mechanical stresses [8]. Auxin maxima at incip-
ient sites overlap with changes in pectin chemistry and EA;
future investigation of the relationship between auxin and
pectin modification will prove critical for our understanding
of organ formation.
Within this work, we have shown the importance of exam-

ining cell wall mechanics with respect to growth. Our methods
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have enabled a literal ‘‘in-depth’’ look at the cell mechanics
associated with organ formation. The results presented here
support a model in which subepidermal tissues play an impor-
tant mechanical role in organ initiation, and epidermal tissues
in regulating subsequent growth. The key role of pectin modi-
fications in the regulation of cell wall mechanics during organ
formation has been highlighted. AFM-based techniques
most likely will continue to provide crucial insights into the
mechanics of growth and development in plants.

Experimental Procedures

Plant Material and Growth Conditions

Arabidopsis thaliana plantswere grown in controlled chambers under short-

day or long-day conditions, as described previously [11]. The PME5oe and

PMEI3oe transgenic Arabidopsis plants have been described elsewhere

[12]. The L1-PME5oe lines were generated by transforming plants contain-

ing pAtML1-AlcR with the pAlcA-PME5 construct [12]. Ten independent

L1-PME5oe lineswere obtained. Three of these lineswere used for the study

of phyllotactic modifications and for the immunolabeling of demethylesteri-

fied HG (Figure S3), and one line was used for AFM and confocal analysis.

These lines also expressed pAlcA-GFP, and this marker was restricted to

the L1 (data not shown).

Scanning Electron Microscopy

Images were obtained with an S-3500N variable-pressure scanning electron

microscope (Hitachi).

Confocal Microscopy

A. thaliana meristems were dissected from nontransgenic, induced

35S:PMEI3, and induced 35S:PME5 plants and stained in 0.05% propidium

iodide for visualization of cell walls. Transgenic plants were induced for

48 hr as described [11, 42]. Confocal stacks were taken of 12 meristems

per genotype, using a 633 long-distance water immersion lens attached

to a Leica DMR XE7 as described in [43]. Samples were mounted in water,

and 0.5 mm deep optical sections were taken to cover the depth of the meri-

stem and youngest primordia. Resulting image stacks were processed

using Imaris software (V6) to obtain surface projections and slices through

different staged organs and the meristem. Images in figures are representa-

tive of all samples examined (n = 12 per genotype).

AFM Measurements

All samples were plasmolyzed in 10% (0.55 M) mannitol prior to measure-

ment. This treatment was fully reversible and did not affect the viability

of the meristem (data not shown). The following numbers of meristems

were analyzed: NT, n = 36 (5 mm beads) and n = 12 (1 mm beads); PMEI3oe,

n = 8; PME5oe, n = 13; L1-PME5oe, n = 8.
For EA measurement using force spectroscopy, an approach and retract

period of 0.3 s with no delay was used and a constant maximum force was

imposed; this value was determined for each experiment to obtain a

maximum deformation at all points of the sample of about 500 nm (10%

deformation of a meristematic L1 cell in Arabidopsis).

To evaluate the viscoelasticity of meristem tissue, we performed three to

four successive long indentation cycles (10 s indentation followed by 10 s

partial release). An initial indentation ofw0.5–1 mmwas followed by cyclical

indentation and releases of 0.25 mm for at least three cycles. In the indenta-

tion portion force was kept constant, and in the release portion deformation

was constant.
Viscosity Calculations

Our modified Kelvin-Voigt model yields the following equation:

FðtÞ= a
dx

dt

�
12 e2bt

�
; (1)

where

b=
k1 + k2

h
(2)

and

a=
k1k2
k1 + k2

: (3)

Although we could not solve k1 and k2 from the model, we could gain the

bulk elasticity, a, and also determine the relaxation time, b. We focused

on the part of the experiment where the deformation was kept constant,

where the model predicts that the force will evolve as a negative exponen-

tial. MATLAB (http://www.mathworks.com/products/matlab/) was used to

fit the data using the above Equations 1–3.

Indentation cycles were performed at several positions on the meristem,

incipient organs, and primordia. The meristem, incipient organs, and

primordia were determined following an initial AFM elasticity mapping.

The average value of a and b is presented for each point of measurement

for four meristems.
Apparent Young’s Modulus Calculations

The Hertzian contact model [22] provides the relationship between the force

applied, F, and the resulting indentation, d:

F = ldb =A
E

12 v2
db: (4)

Exponent b and shape factor A depend on the precise bead shape (see

Table 1 in [22]). E is the Young’s modulus (herein referred to as apparent

Young’s modulus, EA) and n the Poisson ratio (assumed n z 0.5).

http://www.mathworks.com/products/matlab/
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Based on EA maps, 30–40 individual EA values were taken along anticlinal

walls, or their predicted area, and averaged to provide graphical data. The

total number of values displayed in graphs corresponds to 50% or 25% of

the total values available.

Incipient organ position was determined by extrapolating the phyllotactic

pattern, and the ten cells surrounding this position were considered to be

included within it.

Supplemental Information

Supplemental Information includes three figures and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.cub.2011.08.057.
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23. Pelloux, J., Rustérucci, C., and Mellerowicz, E.J. (2007). New insights

into pectin methylesterase structure and function. Trends Plant Sci.

12, 267–277.

24. Stolz, M., Raiteri, R., Daniels, A.U., VanLandingham, M.R., Baschong,

W., and Aebi, U. (2004). Dynamic elastic modulus of porcine articular

cartilage determined at two different levels of tissue organization by

indentation-type atomic force microscopy. Biophys. J. 86, 3269–3283.

25. Kutschera, U. (1996). Cessation of cell elongation in rye coleoptiles is

accompanied by a loss of cell-wall plasticity. J. Exp. Bot. 47, 1387–1394.

26. Nolte, T., and Schopfer, P. (1997). Viscoelastic versus plastic cell wall

extensibility in growing seedling organs: A contribution to avoid some

misconceptions. J. Exp. Bot. 48, 2103–2107.

27. Caesar, K., Elgass, K., Chen, Z., Huppenberger, P., Witthöft, J.,
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