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ABSTRACT

Ancestral sequence reconstruction is essential to a
variety of evolutionary studies. Here, we present the
FastML web server, a user-friendly tool for the
reconstruction of ancestral sequences. FastML im-
plements various novel features that differentiate it
from existing tools: (i) FastML uses an indel-coding
method, in which each gap, possibly spanning
multiples sites, is coded as binary data. FastML then
reconstructs ancestral indel states assuming a con-
tinuous time Markov process. FastML provides the
most likely ancestral sequences, integrating both
indels and characters; (ii) FastML accounts for uncer-
tainty in ancestral states: it provides not only the pos-
terior probabilities for each character and indel at
each sequence position, but also a sample of ances-
tral sequences from this posterior distribution, and a
list of the k-most likely ancestral sequences; (iii)
FastML implements a large array of evolutionary
models, which makes it generic and applicable for
nucleotide, protein and codon sequences; and (iv) a
graphical representation of the results is provided,
including, for example, a graphical logo of the
inferred ancestral sequences. The utility of FastML
is demonstrated by reconstructing ancestral se-
quences of the Env protein from various HIV-1
subtypes. FastML is freely available for all academic
users and is available online at http://fastml.tau.ac.il/.

Introduction

Ancestral sequence reconstruction (ASR) methods require
as input both a multiple sequence alignment (MSA) of
existing sequences and a corresponding phylogenetic tree

(either provided or computed from the MSA). They
output a statistical inference of the ancestral sequence at
any internal node of the phylogenetic tree. ASR is being
used in a steadily increasing number of evolutionary
studies [reviewed in (1)]. For example, in protein ‘resur-
rection’ studies, ancestral sequences are synthesized and
characterized, thus providing the ability to test evolution-
ary hypotheses regarding protein evolution. Such an
approach was successfully applied to study the evolution
of the ancestral archosaur visual pigment rhodopsin (2)
and the evolution of the steroid receptor (3) to name a
few. ASR was also applied in various other contexts,
including protein engineering (4), the study of HIV evolu-
tion (5) and the study of variation in DNA turnover due
to indels and substitutions among eutherian mammalian
lineages (6).

There are two main paradigms for ASR: maximum par-
simony (MP) and probabilistic-based reconstruction. The
latter includes maximum likelihood (ML) and Bayesian
reconstructions, both of which were shown to outperform
MP [e.g. (7)]. One advantage of probabilistic-based
approaches is that they also provide an estimate of the
confidence in each inferred ancestral character, most
often expressed as its posterior probability given the
data. While MP reconstruction has a time complexity
linear in the number of sequences analyzed, efficient algo-
rithms have also been developed for different types of
ML-based reconstructions [reviewed in (8)], with a time
complexity that is linear with the number of sequence for
most algorithms (9,10) and exponential in the worst case
scenario for one variant (joint reconstruction with among
site rate variation). Notably, all algorithms can be effi-
ciently used for large data sets in most practical cases (11).

Various tools for ASR exist. Most of these tools apply
the now standard dynamic programming algorithms to
find the most probable sequence at a specific node
(9,10). However, they differ in various aspects, among
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which the most important ones are: (i) the way gaps in the
alignment are treated; (ii) the flexibility with respect to the
allowed evolutionary models and the number of optional
parameters; (iii) the generation of near-optimal solutions
(i.e. for a given node of the tree, plausible sequences that
only marginally differ from the single most likely ancestral
sequence); (iv) the graphical user interface (GUI) and the
ease of use. Here we present the FastML web server,
which aims to improve upon existing tools with respect
to all these aspects, as detailed below. FastML is freely
available for use at http://fastml.tau.ac.il/ with no require-
ment of log-in.

In ASR algorithms, gaps are usually treated as
unknown characters (10,12) or as an additional character
(13). These approaches are problematic since they ignore
dependencies among sites. Furthermore, treating gaps as
unknown characters results in ancestral sequences that are
longer than all present day sequences, which is unrealistic.
One possible way to overcome this limitation is to
introduce a heuristic approach that maps indels to a phyl-
ogeny so that they maximize some ad hoc scoring function
(6). The GASP program (14) also computes probabilities
of gaps at internal nodes. However, it uses an unrealistic
model in which gaps in adjacent MSA columns are
assumed to be independent. Furthermore, the proba-
bilities of gaps at internal nodes are not computed based
on a continuous time Markov model, which is used for
reconstructing substitution events. As described below, in
FastML, we developed a different approach in which we
first apply an indel-coding methodology that provides for
each indel a presence (‘1’) or absence (‘0’) state in the input
sequences. FastML then applies an ML-based
reconstruction algorithm for binary data to determine
the probability of gap character state in the ancestral
sequences.

For protein-coding genes, amino acid-based reconstruc-
tion rather than codon-based reconstruction is usually
applied [e.g. (2,14)]. This stems from two main reasons:
(i) the availability of various empirical amino-acid substi-
tution matrices that were inferred from a large collection
of protein sequences; (ii) for more diverged sequences, the
synonymous substitutions are often saturated. However,
these models ignore the codon structure of coding
sequences, and thus they may be less accurate compared
to codon models that explicitly account for the chosen
codon at each amino acid site. Furthermore, reconstruct-
ing ancestral regulatory regions are expected to become
more common with the increased availability of fully
sequenced genomes. Thus, FastML allows reconstructing
ancestral sequences using nucleotide substitution models,
amino acid replacement models and codon models.

Simulation studies have shown that at each specific
position the most likely ancestral state has a high prob-
ability to reflect the ‘true’ one [e.g. (15)]. However, this
high accuracy reflects an average over all sites, many of
which are conserved sites in which accurate reconstruction
is trivial. In practice, the probability of the ‘true’ ancestral
sequence to be identical to the reconstructed one across
the entire sequence is rather small due to several highly
variable sites. Furthermore, it was shown that the most
likely reconstructed ancestor might be biased: it tends to

favor common amino acids in a particular position over
rare variants (15). To account for this problem, most
programs not only provide the most likely character at
each site, but also give the posterior probabilities of
each ancestral character as output. However, correct
usage of these probabilities in studies utilizing ancestral
sequences is not obvious. In the FastML web server, we
do not only report these site-specific probabilities, but
additionally we provide the set of the k most likely ances-
tral sequences at each node. Since ancestral sequences are
often used to infer protein variants that are more stable
than all current day sequences (15), this set provides a list
from which protein engineers may choose to synthesize
highly stable proteins. FastML also provides, for each
node a list of ancestral proteins sampled from the poster-
ior distribution. In simulations, this set was shown to
better represent the amino-acid composition and biochem-
ical properties of the ‘true’ ancestral sequence compared
with the most likely ancestral sequences (15). Details on
the generation of alternative ancestral states are given in
the OVERVIEW section of the web server.
Finally, the web server is tailored for both novice and

advanced users. The novice user is provided with a
user-friendly interface that requires only an MSA as input.
The server further provides a rich graphical output that
includes: (i) projection of the ancestral sequences onto the
phylogeny; (ii) color-scaled projection of the reconstruction
probabilities at the internal nodes of the tree; and (iii) a
graphical logo of all possible alternative reconstructions.

MATERIALS AND METHODS

Given an MSA and a phylogenetic tree, the ancestral re-
construction process can be divided into two parts: char-
acter reconstruction and indel reconstruction. The results
of both reconstructions are integrated to provide the most
probable ancestral sequences in each node of the phyl-
ogeny. Figure 1 shows a flowchart of the ASR procedure.
The minimal input of the web server is an MSA of nucleo-
tide, protein or codon sequences. ASR depends on a tree,
which is computed from the MSA using either the
neighbor joining algorithm or using the ML tree search
procedure as implemented in RAxML (16). Users may
also provide their own tree as input. The FastML server
then runs two algorithms that together reconstruct the
ancestral sequences. The first infers for each indel charac-
ter whether or not a gap is present in the ancestral
sequence. The second algorithm then infers the most
likely character states only in the non-gapped positions
of the ancestral sequences. A short description of the
methodology is provided below and a more detailed one
is available at http://fastml.tau.ac.il/ under the
OVERVIEW section.
To account for the dependence of insertions and dele-

tions among sites, the FastML server first employs the
simple indel coding scheme (17) to code all indels in the
data as binary (presence\absence) characters, each of
which may represent a gap of multiple sites. The binary
data matrix is then provided as input to an ML-based
ancestral indel reconstruction algorithm. The evolutionary
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model for this indel reconstruction step allows for variable
rates of insertions and deletions among indel sites, similar
to the model that we have previously developed for
phyletic patterns (18,19). The output of this step is the
posterior probability for each indel site at each ancestral
node of the phylogeny. Most likely character states in the
ancestral nodes are reported only in positions that are
inferred to be non-gapped with a probability �0.5.
Alternatively, users can select to reconstruct the ancestral
indel states based on the MP approach (20).
The previously described FastML algorithms are used

to infer the most likely ancestral sequences (10,11). Both
joint and marginal reconstructions are implemented.
Briefly, in joint reconstruction, the most likely set of
ancestral states at all the internal nodes is inferred, while
in marginal reconstruction the most likely sequence at a
specific internal node is inferred, averaging over all
possible ancestral states at all other nodes. Rate variation
among sites is accounted for by assuming that the rate at
each site is sampled from a discrete gamma distribution
(21). The user is allowed to choose the evolutionary model
that best fits the data analyzed. For amino acids, the
server implements the Dayhoff (22), JTT (23), WAG
(24), LG (25), mtREV (26) and cpREV (27) replacement
matrices; for nucleotides, the JC (28) and the HKY (29)
substitution matrices are implemented. For codon charac-
ters, the server offers the M5 (30), the empirical codon
matrix (31) and the MEC (32) models.
Running time depends on the number of sequences and

their length, the evolutionary model, the proportion of

gaps and the reconstruction algorithm. Codon models
are the most time consuming and nucleotide models are
the least. Additionally, accounting for among site rate
variation is significantly more complex for the joint
reconstruction compared to the marginal reconstruction
(11). To aid users with estimating the running time for
their data sets, the OVERVIEW section of the server
includes detailed information regarding the average
running time on simulated data sets of various sizes,
using different evolutionary models. In addition, an esti-
mation of the running time is given for each run.

FastML outputs

FastML provides the following outputs:

(i) the posterior probability of each character
(or indel) for each site at each ancestral node;

(ii) MSAs augmented with the reconstructed ancestral
sequences: one MSA according to the joint recon-
struction and a second according to the marginal
reconstruction;

(iii) the reconstructed phylogenetic tree;
(iv) the k most probable ancestral sequences for each

ancestral node (where k is defined by the user);
(v) a set of l sequences sampled according to the pos-

terior probabilities for each site and each node
(where l is defined by the user);

(vi) a graphical visualization of the most probable ASR
at each node colored according to the posterior
probabilities. A graphical logo representing the pos-
terior probabilities of each possible character for
each ancestral node is further provided using
WebLogo (33); and

(vii) a projection of the ancestral sequences onto the
phylogeny. Using Jalview (34), the user can view
the ASR at each internal node. Furthermore, the
user can download the ancestral sequences of
specific nodes or the sequences of an entire subtree.

CASE STUDY

Reconstructing the ancestral sequences of HIV-1 is a
challenging task due to its fast rate of evolution.
Nevertheless, ASR was suggested to be of great value to
HIV-1 vaccine design that aims to elicit an immune
response against a broad spectrum of contemporary
viral strains [e.g. (35)]. Specifically, the envelope protein
(Env) exhibits an extraordinary diversity (up to 35%
diversity among different HIV-1 subtypes), which is
attributed to mutational escape of the virus from the
host immune system. The viral high mutation rate is
also responsible for the ability of the virus to acquire
resistance to drug treatments and is also a major
obstacle toward developing an efficient vaccine.

Here, we illustrate the ability of FastML to reconstruct
ancestral Env sequences. We run FastML on a sample of
HIV-1 group M sequences from subtypes B and C taken
from a previous study (36). Our analysis is focused on the
marginal reconstruction of the ancestral sequences of
subtype C, which is the most prevalent subtype and

Figure 1. A schematic flow chart of the FastML web server.
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accounts for nearly half of all infections globally, and
subtype B, which is predominant in the western world and
accounts for �12% of global infections. Sequences were
aligned usingMAFFT (37). The alignment, running param-
eters and the results are provided in the web server’s
Gallery. Several differences were found between clade B
and clade C ancestral sequences, including both different
character and indel assignments. Interestingly, some sites
were reconstructed with high confidence in subtype C and
low confidence in subtype B, and vice versa. Among these
sites is position 592 in the MSA, which corresponds to
position 414 of gp120, a derived protein of Env. This
position is involved in the binding of the co-receptor
CCR5. FastML inferred that this site in the ancestral of
subtype C was threonine with a high posterior probability
(0.997), while the reconstruction of the ancestor of subtype B
is arginine with a much lower posterior probability (0.628
only). The different reconstructions are visually presented in
Figure 2. The difference in the posterior probability between
the ancestors of these two clades in this position may
be explained by a previous analysis that suggested that the
intensity of selection forces on this position is not constant

among the various HIV-1 lineages (36). Specifically, this
position is highly conserved in subtype C but is variable in
subtype B, which is directly reflected in the posterior
probabilities. We further used FastML to provide the 100
most likely ancestral sequences of the ancestral of subtypeC.
At the abovementioned site, threonine is always inferred,
which is in agreement with its high posterior probability.
Notably, the difference in log-likelihood between the
most likely ancestral sequence at this node and the 100th
most likely sequence is only 0.141, indicating that both
sequences are almost as likely to reflect the ‘true’ ancestral
sequence.
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